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ABSTRACT 

We give a cohomological  in te rpre ta t ion  of the  Brauer  group of a coalgebra 

in t e rms  of Galois coextensions  and  Galois cohomology. There  is a crossed 

coproduc t  s t ruc tu re  theorem,  and  the  co-version of the  classical spl i t t ing 

t heo rem holds for the  Brauer  group of an  irreducible coreflexive coalgebra 

bu t  it does  not  hold in general.  

I n t r o d u c t i o n  

The crossed product theorem in the classical theory of the Brauer group relates 

the subgroup of the Brauer group split by a given extension to the second (Galois) 

cohomology group. This result provides us with an effective method to calculate 

explicitly in the Brauer group and it reduces problems for algebras to problems 

for groups. 

In [15], we introduced the Brauer group of a cocommutative coalgebra; the 

classical theory dualized well enough but the 'duality' did not follow in a straight- 

forward way because of some particular coalgebra effects that  produced them- 

selves. For example, the Brauer group need not be a torsion group. On the 
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other hand, some cohomology theories do exist, e.g. Sweedler cohomology [12] 

or Doi cohomology [4]; some crossed coproducts for Hopf algebras have already 

been investigated in [4, 6]. It seems to be natural to try to extend this theory 

for coalgebras, looking for a cohomological description of the Brauer group of a 

cocommutative coalgebra. This is the main aim of this paper. For a finite dimen- 

sional commutative Hopf algebra we prove that Doi cohomology and Sweedler 

cohomology coincide (Lemma 3.1). On the other hand, Sweedler cohomology 

and Galois cohomology coincide (with Amitsur cohomology cf. [1, 12]) for Hopf 

algebras which are dual to a group Hopf algebra. This makes it possible to ex- 

tend the classical theory of crossed products to the case of Galois coextensions 

with respect to finite groups. The comodule theory of coalgebras may be con- 

sidered 'easier ' than its algebras equivalents because of the in-built finiteness 

aspects of coalgebras; nevertheless in Brauer group theory these aspects do not 

interfere at all. The extension of the classical theory of crossed products to the 

case of Galois coextensions w.r.t, finite groups does contain the relation between 

the crossed coproduct structure and the existence of maximal cocommutative 

quotient coalgebras (Prop. 3.3, Prop. 3.6). In fact, Proposition 3.6 replaces a 

classical result due to M. Auslander and O. Goldman, stating that  an Azumaya 

algebra A over a commutative ring S split by a finitely generated projective ex- 

tension T of S is equivalent to an Azumaya algebra containing T/S as a maximal 

commutative subring. In a similar way, Proposition 3.7 will replace the classical 

Skolem-Noether theorem. Finally we arrive at the main result, Theorem 3.8, 

that replaces the classical crossed product theorem describing the split part of 

the Brauer group as a second Galois cohomology group. That is, for a finite 

group G and a cocommutative coextension C/R such that C/R is kG-Galois, we 

obtain Br(C/R) = H2(C, kG*). This interpretation gives a completely cohomo- 

logical description of the Brauer group of an irreducible coreflexive coalgebra (cf. 

Th.3.10 and Cor.3.11), and gives an affirmative answer to the question proposed 

in [15, p. 568]. Precisely, if R is an irreducible corefiexive coalgebra, then any 

Azumaya R-coalgebra D is split by a Galois coextension C of R with respect 

to a finite group G. This splitting theorem fails in general for not necessarily 

coreflexive coalgebras where the complete calculation may be possible but would 

reflect some of the usual topological features of 'taking the dual'. 
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1. P r e l i m i n a r i e s  

Throughout k is a fixed field. All coalgebras, algebras, vector spaces and un- 

adorned | Horn, etc. are over k. C, D and E always denote coalgebras. We 

refer to [13] for full detail on coalgebras and comodules. We adopt the usual 

sigma notation for the comultiplication of a coalgebra, and adopt the following 

sigma notation for a (left) C-comodule structure Px of X: 

p(x) = x _l) | x 0). 

Let M e (or CM) denote the category of right (or left) C-comodules. If c~: C 

D is a coalgebra map, then any left C-comodule X may be treated as a left 

D-comodule in a natural way: 

(1) (~ | 1)p: X , C |  X .... , D | X. 

In particular, C is a left (or right) D-comodule. A (C - D)-bicomodule is a 

left C-comodule and a right D-comodule X, denoted by cXD, such that  the C- 

comodule structure map Pc: X ----* C | X is right D-eolinear (or a D-eomodule 

map). 

For a right C-comodule M and a left C-comodule N, the cotensor product 

Mr]cN is the kernel of 

pM| I -  I | M |  | 174  

The functors Mr]c-  and - m c N  are left exact and preserve direct sums. If cXD 

and DYE are bicomodules, then Xr]DY is a (C - E)-bicomodule with comodule 

structures induced by those of X and Y. 

A comodule Xc is quasi-finite if Com_c(Y, X) is finite dimensional for any 

finite dimensional comodule Yc. Similarly, one may define the quasi-finite right 

comodules over C. A comodule Xc is finitely cogenerated if it is isomorphic 

to a subcomodule of W @ C for some finite dimensional space W. A finitely 

cogenerated eomodule is quasi-finite. But the converse is not true. A comodule 

X E M C is said to be a cogenerator if for any comodule M E M C there is a 

space W such that  M r W | X as comodules. Let c~: C ) D be a surjective 

coalgebra map and let c X  be a left C-comodule. If X is quasi-finite as a left 

D-comodule via (1), then c X  is quasi-finite. 

In fact, for any finite dimensional left C-comodule Y, we have an inclusion of 

vector spaces: 

Come(Y, X) C_ COreD(Y, X). 
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This is because a C-colinear map from Y to X is simultaneously a D-colinear 

and k-linear map. Consequently Come(Y, X) is finite dimensional. 

Now we recall from [14] the definition of the co-hom functor and some of its 

basic properties. The following result is fundamental: 

BASIC LEMMA: Let cXD be a bicomodule. Then X D is quasi-finite if and 

only if the functor -[3cX:  M C ~ M D has a left adjoint functor, denoted 

by h_D(X, - ) .  That is, for comodules YD and We, 

(2) Com_c(h_D(X,  Y), W) ~_ Com-D(Y, W D c X ) .  

where 

h_D(X, Y) = lim Com_D(Y~,, X)* -~ l im(XDDr;)*  

is a right C-comodfile, {Y~} is a directed family o# finite dimensional subcomod- 

ules of YD such that Y = U~ Y~. In particular, if C = k, X = D, then h_D(D, - )  

is nothing but the forget#u1 #unctor U: M D , M (here M is the k-module 

category) if C = D, X = D, h _ D ( D , - )  is the identity #unctor from M D to 

M D. Let 0 denote the canonical D-colinear map Y ~. h_D(X,Y)E3GX which 

corresponds to the identity map h_D(X,Y)  ~ h_D(X ,Y)  in (2). Similarly, 

there is a left version of the basic lemma for the quasi-finite comodule c X .  

Assume that  XD is a quasi-finite comodule, e_D(X) = h_D(X, X)  is a coalge- 

bra, called the co-endomorphism coalgebra of X. The comultiplication o fe -D(X)  

corresponds to (1 | 0)0: X ~ e_D(Z)  | e_D(X) | X in (2) when C = k, and 

the counit of e_D(X) corresponds to the identity map l x .  X is an e-D(X)  - D- 

bicomodule with the left comodule structure map 0, given by the canonical map 

X ---+ h-D (X, X )  | X.  

Let cXD be a bicomodule such that XD is quasi-finite. Then there exists a 

coalgebra map 

(3) ~: e_D(X) , C 

such that  the left C-comodule structure equals (A | 1)0. Conversely, a coalgebra 

map A: e_D(X) ~. C makes X into a C - D-bicomodule. Moreover, the C - C- 

bicomodule structure of e-D(X)  through A coincides with the induced C - C- 

bicomodule structure of h-D (cXD,c  XD). Similarly, if c X  is quasi-finite, there 

exists a coalgebra map A': e c -  (X) , D such that  PD: X , X @ D is of form 

(1 | A')0', where 0': X ~ X | e c - ( X )  is the canonical map. 
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A Morita-Takeuchi (M-T) context (C, D , c  PD,D Qc ,  F, G) consists of coalge- 

bras C, D, bicomodules cPD,D QC, and bicolinear maps F: C ~ P[:]DQ and 

G: D ~ Q O c P  fitting in the following commutative diagrams: 

P ~ , P ~ D D  Q ~ , Q[3cC 

C[]cP F01 P[:]DQ[]cP DC]D Q CO1 Q[:]cP[3oQ 

The context is said to be s t r i c t  if both F and G are injective (equivalently, 

isomorphic). In this case we say that C is M-T equivalent to D, denoted by 

C , ~ D .  

H-(CO)MODULE COALGEBRAS: Let H be a Hopf  algebra, C a coalgebra. C is 

said to be a right H-module  coalgebra i f  

(i) C is a right H-module,  

(ii) A(c  ~ h) = ~ c(1) ~ h(1) | c(2) ~ h(2), c E C, h C H,  

(iii) c(c ~ h) = c(c)e(h). 

Dually, a coalgebra D is called a left H-comodule coalgebra i f  

(i) C is a left H-comodule, 

(ii) ~ C(_1) | A(C(0)) = E C(1)(-1)C(2)(-1) | C(1)(0) ~ C(2)(0), 
(iii) EE(c(0))c(_l} = e(C)lH. 

If H is a finite dimensional Hopf algebra, a coalgebra C is a right H-module 

coalgebra if and only if C is a left H*-comodule coalgebra. On the other hand, 

for any Hopf algebra H and right H-module coalgebra C, the convolution algebra 

C* is a left H-module algebra with H-module structure induced by transposition. 

Let C be a left H-comodule coalgebra. We may form a smash coproduct 

coalgebra C >~ H cf. [7] which has counit cc  >~ CH and comultiplication as follows: 

A(C >~ h) -- E ( c ( 1 )  >~ c(2)(_1)h(1)) | (c(2)(0) :~ h(2)). 

If H is finite dimensional, C* is a left H*-module algebra. We have the usual 

smash product  algebra C*#H*.  It is easy to see that C * # H *  is exactly the 

convolution algebra (C >~ H)*. 

Let E be a coalgebra. A coalgebra F is called a c o e x t e n s i o n  of E if E is 

a quotient coalgebra of F. Let C be a right H-module coalgebra, H a Hopf 

algebra. Denote by H + the augumentation ideal Ker r which is a Hopf ideal. 

Then C H  + -- C ~ H + is a coideal of C, and C / C H  + is a coalgebra with a 
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trivial right H-module structure. Let R be the quotient coalgebra C / C H  +. It is 

not hard to check that R* is the invariant subalgebra of the left H-module algebra 

C*. Dual to the terminology of 'H-extension', we call C / R  an H-coextension. 

View C as a left and right R-comodule. There is a canonical linear map 

/3: C | H ~ C[:]RC, c | h ~-* E c(1)[:3c(2) "- h. 

If ~ is bijective, then C / R  is said to be an H-Galois coextension cf. [10]. 

Finally, we recall from [15] the notion of Azumaya coalgebra and the Brauer 

group of a cocommutative coalgebra. Given two coalgebra maps 

E~C~D 

we say that (D, 7/) cocommutes with (E, p) (simply, D cocommutes with E or 

cocommutes with #) if 

Given a coalgebra map ~: C ~ D, there exists a cocommutative coalgebra 

Zc(D)  and a surjective coalgebra map ~d: C ----* Zc(D)  which cocommutes 

with 77 and satisfies the universal mapping property: for any coalgebra map 

p: C ~ E which cocommutes with ~, there exists a unique coalgebra map 

~,: Zc(D)  ~ E such that # = uU d. (Zc(D),~ d) (simply Zc(D))  is called 

the c o c o m m u t a t o r  c o a l g e b r a  of the coalgebra map 7/. In fact, Zc(D)  ---- 

hDOp| C). In particular, the cocommutator coalgebra of 1D: D ~ D is a 

cocommutative quotient coalgebra of D, denoted by Z(D), which is referred to 

as the c o c e n t e r  of D. A cocommutative quotient coalgebra E of a coalgebra 

C is said to be m a x i m a l  if Zc(E)  = E. Equivalently, if F is a cocommutative 

quotient coalgebra of C such that C ~ F ~ E equals C ~ E, then F = E. 

Let R be a cocommutative coalgebra. An R-coalgebra D is a k-coalgebra with 

a coalgebra map ~: D ~ R, called the R-counit, which cocommutes with the 

identity map lB. Any coalgebra D is a Z(D)-coalgebra. An R-coalgebra D 

is said to be c o c e n t r a l  if Z(D) ~ R. An R-coalgebra D is c o s e p a r a b l e  if 

the comultiplication map A: D ~ D[]RD splits as a (D, D)-bicomodule map, 

or equivalently, D as a left D~ with the comodule structure as 

follow: 

(4) D ~ (D~ | D, d ~ E(d(3)[:]d(1)) | d(2), 
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is injective. If D is an R-coseparable coalgebra, then the 'Maschke theorem' cf. 

[15, 3.4] says that  if a D-comodule X is injective as an R-comodule, then X is 

injective as a D-comodule. 

An Azumaya R-coalgebra is defined to be an R-cocentral and R-coseparable 

coalgebra. An R-coalgebra D is Azumaya if and only if DR is a quasi-finitely 

injective cogenerator and en(D) ~- D e canonically [15, 3.14]. If D is an Azu- 

maya R-coalgebra, then the functor --[:]RD defines a Morita-Takeuchi equiv- 

alence between the comodule category M R and the comodule category M D~, 

where D e = D~ is said to be the R-enveloping coalgebra of D. Denote 

by B(R) the set of the isomorphism classes of Azumaya R-coalgebras. Then the 

Morita-Takeuchi equivalence is an equivalence ~ in B(R). The set B(R)/,.~ is 

a group with multiplication [:]R, and called the B r a u e r  g r o u p  of coalgebra R, 

denoted by Br(R). It was shown in [15] that two Azumaya coalgebras C and 

D are equivalent if and only if there are two quasi-finite injective cogenerator 

R-comodules M, N such that 

CnR eR(M) ~- DOR eR(N), 

where ca(M), ca(N) are Azumaya R-coalgebra with the R-counits induced by 

the bicomodules structures of RMR,R NR cf. (3) respectively. 

Let f :  C , R be a coalgebra map of cocommutative coalgebras. The map f 

induces a homomorphism from Brauer group Br(R) to Br(C) [15]: 

f :  Br(R) , Br(C), [D] H [D[3RC ]. 

Denote by Sr(C/R) the kernel of the homomorphism f .  Br(C/R) is called the 

relative Brauer group (a subgroup of Br(R)) with respect to the map f .  The 

elements in Br(C/R) are called the split Azumaya R-coalgebras. 

2. H o p f  Galo is  c o e x t e n s i o n s  of  a c o c o m m u t a t i v e  c o a l g e b r a  

In this section, H is a finite dimensional Hopf algebra. C is a right H-module 

coalgebra, or equivalently a left H*-comodule coalgebra. Let R be the quotient 

coalgebra C/CH +. C/R is an H-eoextension. C may be viewed as a left or right 

R-comodule in a natural way. Let C >~ H* be the smash coproduct. There is a 

left coaction of C )4 H* on C: 

~/(C) = Z ( C ( 1 )  )4 C(2)(_1))@C(2){0) 
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that  makes C into a (C >~ H - R)-bicomodule. Let T be a left integral of H and 

let A be the distinguished group-like element of H* which satisfies: 

Th =< g,A > T, V h C H .  

In [3] we defined a right coaction of C >4 H* on C as follows: 

= | 

which makes C into a right C >4 H*-comodule and an (R - C >4 H)-bicomodule.  

Let [] denote the cotensor product over R. We have a Morita-Takeuchi context: 

(5) (C >4 H*,R, C~H. CR, RCc~H*,F,G), 

where the canonical bicolinear maps are defined as follows: 

F: C >~ H* ~ CE]C, c >4 h* ~ Ec(1)[]c(2)<o>{T,c(2)(_l)h*), 

G: R ~ Cf-3C>~H.C , -at---+ E c(1)(o)[3c(2)<o)<T,c(1)(_l)C(2)(_1)). 

The relationship between the M-T context (5) and the GMois coextension is 

that C/R is H-Galois if and only if the canonical map F in (5) is injective cf. 

[3]. We need the following lemma: 

LEMMA 2.1 (cf. [3]): Let C/R be an H-Galois coextension. Then 

(i) CR and RC are quasi-finite injective comodules. 

(ii) e_R(C) -~ C >~ H* and eR-(C) -~ C ~ H*. 

Let D be a coalgebra, M be a right D-comodule. Then there exists a mini- 

mal  subcoalgebra D(M) of D such that  M = p-~(M | D(M))  ~- M[]DD(M). 

Clearly, D(M)  = N~r D~, where M = p - l ( M  | D~). I is not empty  since D is 

some D~. If we choose a linear basis {m~, A E A} of M and p(m~) = }-~ m~|  

A, # E A, then D(M)  is generated by the set { e ~ ,  A, # C A}. M is said to be 

(D- )co fa i th fu l  if D = D(M).  

In the sequel, we discuss an H-Galois coextension C / R  with R being 

cocommutative;  this will be used in the next section. 

LEMMA 2.2: Let R be a cocommutative coalgebra, M an R-comodule. If  R ~ is 

a subcoalgebra of R such that M[:3R' = O, then R ' ~  R(M)  = O. 

Proof." Suppose that  R' N R(M) # 0, hence there exists a simple subcoalgebra 

S C_ R' N R(M).  Obviously, M[]S = 0. Since R(M) is a direct sum ~ E~ of 
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irreducible subcoalgebras Ei, there exists some Ej which contains S. Then MrnEj 

must be zero. Otherwise, we would have that M(Ej)  = p - l ( M  | Ej) ~- MDEj  

is a non-zero Ej-comodule. There is a simple Ej-subcomodule V C M(Ej) .  

However, by [5, p. 354] there exists a simple subcoalgebra S' of Ej such that  

V ~ V | S' is the restriction of M(Ej)  ~ M(Ej)  | Ej. But since Ej is 

irreducible, S' = S. Therefore, we have 

V = V[]sS = VDE, S C_ M(Ej)OE, S = M[2S = O, 

leading to a contradiction! This yields: 

M = M(R(M) )  = ( ~  M(Ei) = ( ~  M(EI) = M(E') ,  
i iCj 

where E = t ~ r  Ei. This contradicts the choice of R(M).  Therefore we must 

have R' N R(M) = O. | 

COROLLARY 2.3: Let R be a cocommutative coalgebra. I f  P is a quasi-finite 

injective R-comodule, then PR is a cogenerator if and only if PR is cofaithful. 

Proofi Since PR is quasi-finite injective we have the canonical isomorphism cf. 

[14, 2.5,3.2]: 

F: eR(P) , POP,, P, = hn(P, R). 

By [14, 3.2], PR is a cogenerator if and only if the canonical map: 

G: R ~ P,r~eR(p)P 

is injective. Suppose that PR is a cogenerator. We may cotensor the isomorphism 

G by R(P) over R, then we get an R-colinear isomorphism: 

GDR(P): R(P) ~_ ROR(P) ~_ P, OeR(p)POR(P ) ~_ P, DeR(p)P , 

where PDR(P)  ~_ P by definition. It follows that  the inclusion R(P) , R is 

an isomorphism, and hence R(P) = R. 

Conversely, let K be the kernel of G. Then we have the following exact 

sequence: 

0 , PDK ~ PDRm--~GPnP, D~(p)P. 
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Moreover, the following diagram is commutative: 

p ~- , eR(P)[~eR(p)P 

P n R  l o g  prnp, n R(p)p 

Since F[ ] I  is an isomorphism, I[:]G is an isomorphism too, and P[:]K = 0. By 

Lemma 2.2, K ~ R ( P )  = O. However, R(P)  = R, hence K = 0, and C is 

injective. | 

In the sequel, a quasi-finite injective cogenerator comodule over a cocommuta- 

tive coalgebra is said to be a cofa i th fu l ly  in jec t ive  comodule. 

COROLLARY 2.4: Let C / R  be all H-Galois coextensioll. I f  R is cocommutative 

then M R ~ M e ~H. 

Proof." By assumption, CR is a quasi-finite injective comodule. Now R is 

cocommutative and CR is cofaithful. It follows from Proposition 2.3 that CR 

is a cogenerator, and hence the functor -[:]C defines a M-T equivalence from 

M R to M C>4H. | 

P R O P O S I T I O N  2 . 5 :  I f  C / R  is all H-coextension and R is cocommutative, t h e n  

C / R  is an H-Galois coextellsion if alld only if C*/R* is H*-Galois. In this case, 

C is a fillitely cogenerated and free R-comodule. 

Proof." ~I he 'if part '  holds in the general case cf. [3]. We only need to show that  

C*/R* is H*-Galois if C / R  is H-Galois, and we prove the equivalent condition 

that  C* as a left C*#H-module  is a generator. If C as an R-comodule is finitely 

cogenerated we have an C >4 H*-colinear composite map: 

C >4 H* ~- CDC "-~ C[hR ~ ~_ C n. 

Dualizing the above map, we obtain the desired C*~H-linear  surjective map 

C *n ~ C*~r ~ O, and C* is a C*#H-generator .  

We show that  CR is finitely cogenerated. Let R = ( ~  R~, a direct sum of 

irreducible subcoalgebras. Identifying C with C[:]R, we may decompose C as 

follows: 

c = c [ ] ( G  R,)= G c[]R  = G c,, = c[]R  
i i 
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It is clear that  Ci is an Ri-coalgebra, and a right H-module coalgebra that  

satisfies: 

C~H + = Ci ~ H + = C ~ H+[]Ri.  

Since Ri is a direct summond of R, Ri is an injective (or equivalently cofiat) 

R-comodule. It follows that -[:]Ri is an exact functor. So we have an exact 

sequence: 

0 ~ CH+[]Ri  ) C D R i  ) R D R i  ----+ O. 

This is exactly the exact sequence: 

0 ~ CIH  + ~ Ci > Ri ~ O. 

Thus, for each i, C i / R i  is an H-coextension. We show that C i / R i  is H-Galois. 

Indeed, the canonical Galois isomorphism/3 may be cotensored by Ri, so as to 

yield an isomorphism: 

j3i:]Ri: C | H[:]Ri , C[~CnRi ,  

which is exactly the following isomorphism: 

/31: (CnR~)  @ H , (COR{)DR,  (CORi) .  

So C{/Ri  is H-Galois. Now R{ is irreducible. By Lemma 2.1 Ci is a (quasi- 

finite) injective R{-comodule, and hence a free R{-comodule. This implies that  

Ci is finitely cogenerated (because a quasi-finite free comodule must be finitely 

cogenerated). Assume Ci ~- Ri | W ,  dim(W) = n for some positive integral n. 

Then the Galois isomorphism/3/induces an isomorphism 

(6) R i | 1 7 4  "~ Ri |  

Note that  Ri is irreducible and the dimension of the coradical of Ri is finite. 

Since R~ is cocommutative the coradical of the regular Ri-comodule is the same 

as the coradical of the coalgebra Ri. Computing the dimensions of the coradicals 

in the two sides of (6) we arrive at n = dim W = dim H. As n depends only on 

H, we have that  

( O R , ) n  : R  o 

i 4 

is a free R-comodule and it is clearly finitely cogenerated. 1 
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LEMMA 2.6: Let C / R  be an H-Galois coextension. I f  C is cocommutative and 

H is cosemisimple, then C is an R-coseparable coalgebra. 

Proof." Let t3: C | H ~ COC be the canonical Galois isomorphism. Since C 

is cocommutative,/3 is a coalgebra isomorphism. Define a left C @ H-comodule 

structure on C as follows: 

)C(C) : ~-'~(C(1 ) | 1) @ c(2). 

One easily sees that  the comodule structure X induces the usual left C~-comodule 

structure p of C by means of the base change/3, that  i s ,  the following diagram 

commutes: 
C x . (C| 

(coc)  | c 

Now the usual embedding C ---* C | H, c ~ c @ 1 is left C @ H-colinear. Since 

H is cosemisimple, we may choose an integral T 6 H* such that  (T, 1H> ---- lk. 

Define a map 

~ : C |  ~C, c |  

Note that  for any h 6 H, (T,h)IH = ~h(1)(T,h(2)) ,  so a is a left C | H-  

comodule map. Of course a is surjective. Thus, C as a left C | H-comodule is 

a direct summand of the regular C @ H-comodule C | H, and hence is injective. 

By a base change argument it follows that  C is an injective C~-comodule, i.e. C 

is an R-coseparable coalgebra. | 

Schneider recently proved in a different way that the non-cocommutative Galois 

coextension is coseparable if the Hopf algebra is cosemisimple [11]. 

3. Galois cohomology 

In this section, we will show that the relative Brauer group of a Galois coextension 

is the second Galois cohomological group, that is, we prove an analogue of the 

crossed product theorem. First let us recall the Sweedler's cohomology and the 

Doi cohomology. Let H be a commutative Hopf algebra, C a cocommutative left 

H-comodule coalgebra. The Doi cohomology of H in C is defined by means of 

the semi-cosimplicial complex cf. [4, 6]: 

Reg(C, H ) - ~ R e g ( C ,  H 2) d2>... ~ Reg(C,H n) d~Reg(C,H,~+l ) , . . .  
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where Reg(C, H n) is the unit group of the convolution algebra Horn(C, H ~) cf. 

[13], and the n-th degree differential dn: Reg(C, H ~) ~ Reg(C, H n+l) is defined 
--• 

as f0 * ]~-1 . . . . ,  f ~ - l ,  and the coface map ]~ is induced by the coface map 

f~ :H '~ ~H ~+1, f i ( h o Q h l Q " ' Q h n - 1 ) = h o | 1 7 4  

and fn(ho @.. .  | hn-1) = h0 @.-. | h~-i  | 1. The n-th cohomology group of H 

in C is defined by 

H n (C, H) = Ker dn/Im dn-1 = Z '~ (C, H)/Bn(C, H). 

If H is a cocommutative Hopf algebra and A is a commutative left H-module 

algebra, the Sweedler cohomology of H in A is defined from the semi-cosimplicial 

complex cf. [12]: 

Reg(H, A) d '  Reg(H 2, A) d--~ 2 - ' '  ~ Reg(H ~, A) d_~ aeg (g~+ l ,  A) ----* -. �9 

where d '~ -- 01 * 0 2-1 * ..- * 0 ~• and the coface map 

0i: Reg(H n, A) -----* Reg(H ~+1, A) 

is induced by the face map 

0 n : H  "+1 ~ H n, h o | 1 7 4 1 7 4 1 7 4 1 7 4  

where On(ho @'.. | hn) = h,o @... @ hn-le(hn). The Sweedler cohomology group 

is defined by 

H ~ (H, A) = Ker d" / Im d n-  1. 

Let H be a finite dimensional commutative Hopf algebra, C a cocommutative 

left H-comodule coalgebra. Then C* is a left H*-module algebra. Of course 

C* is commutative and H* is cocommutative. As explained above, we may con- 

sider the Doi cohomology group H ~ (C, H) and the Sweedler cohomology group 

H'~(H *, C*). We have 

LEMMA 3.1: Suppose that H is a finite dimensional commutative Hopf alge- 

bra, and C is a cocommutative left H-comodule coalgebra. Then Hn(C, H) TM 

H'~(H *, C*), Vn. 

Proof. Define morphisms Cn as follows: 

Reg(C, H n) , Reg(H *n, C*), (r174 c I = Ix | f(c)), 
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where (, }: V* | V > k is the usual bilinear map for a vector space V, and 

x | E H *n. One may easily show that r is a group morphism. In fact, r is an 

isomorphism with inverse map ~ given as follows: 

(?/)(B)(C),X @n} : (B(X~n),c) ,  C e C, x | �9 H*~; 

here we identify H with H**. Now it is straightforward to check that the following 

diagram commutes: 

Reg(C, H) 41 , Reg(C, H 2) 42 . . . . .  aeg(C, H n) 

Reg(H*, C*) dl , Reg(H .2,C*) d2 . . . . .  Reg(H *n, C*) 

d~ 
I' 

d ~ 
b 

This yields that  Ker dn ~ Ker d n, Im dn- 1 ~- Im d n and H n (C, H) -~ H n (H*, C*). 

Note that  via the above isomorphisms normalized cocycles correspond to normal- 

ized ones. | 

Now we focus on Galois cohomology. In the sequel, G always d e n o t e s  a f in i te  

g ro up .  I f  no  confus ion  ar ises ,  a kG-Galois  c o e x t e n s i o n  C/R m e a n s  t h a t  

C/R  is a c o c o m m u t a t i v e  Qalois  coex tens ion .  Let C be a cocommutative 

right kG-module coalgebra (G acts on C by automorphisms). This is equivalent 

to say that  C is a cocommutative left H-comodule coalgebra, where H -= (kG)*. 

So C* is a left kG-module algebra. It is well-known that the Galois cohomology 

coincides with the Sweedler cohomology when the Hopf algebra is a group Hopf 

algebra. By Lemma 3.1, we have that the Doi cohomology group Hn(C, H) is 

isomorphic to the Galois cohomology group H n (G, C*). 
Let C J R  be a kGi-Galois coextension, where the Gi are finite groups, i = 1, 2. 

Then CI[:]C2/R is a k(G1 x G2)-Galois coextension because of the following 

commutative diagram: 

(c1[]c2) | k ( a l  x a2)  ~ . (ClnC2)rn(ClnC~) 

(C1 @ kal)[](C2 @ k C 2 )  /~1rn/32, (CI[-IC1)vI(C2v'IC2) 

Since the R-comodules Ci are finitely cogenerated and free (cf. Prop. 2.5) we 

have that  (ClnC2)* TM C~ | C~. This gives rise to an isomorphism between 

the two cohomology groups: 

H'~(CIDC2, k(G1 x G2)*) -~ Hn(G, x C2, C~ | C~). 
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It is clear that  if f l  �9 Zn(C, kC~), f2 �9 Zn(C2, kG~) then 

flOf2 �9 z n ( c l { 3 C 2 ,  k(G1 • G2)*) and flrqf2 �9 Hn(C1DC2, k(G1 x C2)*). 

On the other hand, if C/R is a kG-Galois coextension, then C[:]C/C is a 

k(G x 1)-Galois coextension and a k(1 x C)-Galois coextension. This can be seen 

from the commutative diagram below: 

(COC) | k(C • 1) Zcoc 

(7) 

(C | kG)rn(C | k) ~cOl (C[~C)[~C 

Now we look at the second Doi cohomology group. 

. (CDC)Dc(CC C) 

. C D ( C D C ) .  

LEMMA 3.2: Let C/R be a kG-Galois coextension and f E Z2(C, kG*) a 2- 
eoeyele. Then f [ ] l  E Z2(CDC, k(G x 1)*), 1Qf �9 Z2(COC, k(1 • G)*) and 

f ~ f - 1  �9 Z2(C[~C,k(G • G)*). If f, g �9 Z2(C, kG *) then/by  is cohomologous 

to fg[:]l in Z2(CrnC, k(G x G)*). 

Proof." By Proposition 2.5 C*/R* is an kG*-Galois extension, and C as an 

R-comodule is finitely cogenerated and free. So the natural map (CnC)* 
C* | C* is an isomorphism. In Lemma 3.1 the isomorphism r restricts to the 

following two group isomorphisms: 

Z2(CC3C, H | k) ~- Z2(G • 1, C* | C*), 

Z2(C[:]C, H | H) ~- Z2(G x G, C* | C*), 

where H = kG*. One easily checks that if f ,  g correspond to f ,  y respectively 

under the isomorphism r in Lemma 3.1, then 

f[31 corresponds to f | 1, 

l[:]f corresponds to 1 | ] ,  

fog  corresponds to ] | y, and 

fg[31 corresponds to ] ~  | 1 respectively. 

Now applying [2, A.11], we obtain the statements of the lemma. 1 

Recall from [4, 6] that  each normalized 2-cocycle f determines a crossed 

coproduct C >~/kG*, denoted by V(f,  C, G), which has comultiplication given as 

follows: Vc E C, h c kG*, 

A(c ~ h) = ~--~(c(1) ~ c(2)(-1)fl(c(a))h(1)) N (c(2)(0) ~ f2(c(a))h(2)), 



594 F. VAN OYSTAEYEN AND Y. H. ZHANG Isr. J. Math. 

and counit ec >4 eka*, where f(c) = ~-~fl(c) | f2(c). It is well-known that 

V(f ,  C, G) is isomorphic to V(g, C, G) if and only if f is cohomologous to g. 

In the sequel, if no confusion can arise, we let V denote the crossed coproduct 

V(f ,  C, G). Observe that we have a C*-linear algebra isomorphism: 

(8) V(f ,C,G)* ~- A ( G , C * , f ) = C *  | 7 = r  

PROPOSITION 3.3: Let C /R  be a kG-Galois coeztension. If  f E Z2(C, kG*) is a 

normalized cocycle, then V(f ,  C, G) is an Azumaya R-coalgebra and Zv(C)  = C 

with respect to the canonical map V , C,c ~ p~-~ p(1)c, c E C,p C kG*, that 

is, C is a maxima/cocommutat ive quotient coalgebra of V. 

Proof: It is clear that V(f ,  C, G) is an R-coalgebra. The definition of the crossed 

coproduct entails the existence of a C-coalgebra isomorphism: 

V(f ,  C, G)DC ~- V(fD1,  CDC, a x 1). 

Now fD1 is cohomologous to 1 by Lemma 3.2. It follows that 

V(fD1,  CrnC, G x 1) ~ V(1, CE:]C, G x 1) = (CDC) :~ k(G x 1)*: 

Since CDC/C is k(G x 1)-Galois (cf. (7)), it follows from Lemma 2.1 that we 

have C-coalgebra isomorphisms: 

(9) v(I,  c, c)[]c (cDc) k(C • 1)* ec(C[]C). 

Now c(COC) is quasi-finite injective by Lemma 2.1 and a cogenerator because it 

is free (cf. Prop. 2.5). ec(CDC) is a C-Azumaya coalgebra, i.e. a C-coseparable 

cocentral C-coalgebra. Thus V(f ,  C, G)DC is C-coseparable and C-cocentral by 

(9). Since C is R-coseparable cf. Lemma 2.6, by [15, Prop. 3.6], V(f ,  C, G)DC 

is R-coseparable. Now R is a direct summand of C as an R-comodule since C 

is R-free (cf. Prop. 2.5). It follows from [15, Prop. 3.3] that V(f ,  C, G) is R- 

coseparable. Let Z be the cocenter of V(f ,  C, G) which is clearly an R-coalgebra. 

Then ZDC is the cocenter of V(f ,  C, G)DC by [15, 3.10]. But the cocenter of 

V ( f , C , G ) [ 2 C  is C. This implies that the map -[2C: ZDC ~ ROC is an 

isomorphism. By Corollary 2.4, RC is faithfully coflat and hence the counit 

Z ~ R is an isomorphism, that  is, R is the cocenter of V(f ,  C, G). 

Let D be the cocommutator coalgebra Zv(C) .  Since C cocommutes with 

C there is a unique coalgebra map D ~ C such that the following diagram 
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commutes: 
V(f ,  C, G) 

/ '-.. 
D , C  

Dualizing the above diagram we arrive at an injective algebra morphism: 

C* ~ D* ~ V*, 

where C* commutes with D*. However, C* is a maximal commutative subalgebra 

of the Azumaya algebra V* by (8) and [2, Th. A.12]. Hence C* = D*, and 

C = D .  1 

Let C be a cocommutative R-coalgebra. If P is a C-comodule such that the 

restricted R-comodule PR is quasi-finite, then the bicomodule cPR induces an 

R-coalgebra map e: eR(P) ~ C. If Pc  is quasi-finite, then e has a nice cocom- 

mutator coalgebra. 

LEMMA 3.4: Let C be a cocommutative R-coalgebra, P a quasi-finite 

C-comodule such that PR is also quasi-finite. Let e: eR(P) ---* C be as above. 

Then Z~R(p )(C) = ec(P) .  

Proof  The (ec(P)  - C)-bicomodule structure of P induces an (ec(P)  - R)- 

bicomodule structure on P which induces a canonical coalgebra map r :  

eR(P) ~ ec(P) .  Given any quotient coalgebra map /z: eR(P) ~ E such 

that # cocommutes with e. This gives rise to an (E - C)-bicomodule structure 

on P as follows: 

P E ( P ) = ( # |  P C ( p ) = t ( e N 1 ) p ( P ) ,  p e P  

where p is the comodule structure of eR(p)P, and t is the switch map. It makes 

sense because # cocommutes with e. It follows that there exists a coalgebra map 

v: ec (P)  ~ E such that # = vTr. This means that ec(P)  satisfies the universal 

property of Z ~ ( p ) ( C ) ,  so that (ec(P) ,  ~r) is the desired cocommutator coalgebra. 

1 

Let D be an R-coalgebra. D may be regarded as a left D~-comodule in a 

natural way cf. (4). If C is a cocommutative quotient coalgebra of D, then the 

above left D%comodule structure restricts to a left C[hD-comodule structure on 
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D. Since C is cocommutative, D may be adorned with a (CDD - C)-bicomodule 

structure: 

(10) D ~ (COD) | D | C, d H E(d(3)[:]d(1)) | d(2) | d(4), 

where ~ denotes the the image in C of the element x E D. 

LEMMA 3.5: Let D be an Azumaya R-coalgebra, C a maxima/cocommutat ive 

quotient coalgebra of D. View D as a (C[:]D - C)-bicomodule as above. Then 

the canonical map j: ec(D)  ~ C n D  induced by the bicomodule structure is a 

C-colinear isomorphism. I f  C is R-coseparable then D is a cofaithfully injective 

C-comodule and an injective left COD-comodule. 

Proo~ Recall from [15] that for an Azumaya coalgebra D, the induced R- 

coalgebra map: 

f:  eR(D) ~ D~ = D e, 

given by the bicomodule structure of D, DR, is an isomorphism. Observe that  f 

is a C-colinear map, i.e. the following diagram commutes: 

en(D) f , D~ 

C 

Here p is the projection map. Since C is a maximal quotient cocommutative 

coalgebra of D as well as of D ~ we have ZDop(C) = C and Zoo(C) =- CDD 

(with respect to pDs). On the other hand, DR is quasi-finite since D is R- 

Azumaya. By the remark before the basic /emma, we have that Dc is quasi- 

finite. Thus, ec(D)  makes sense, and ZeR(D)(C ) = ec(D)  by Lemma 3.4. So f 

induces a coalgebra isomorphism: 

j: ec(D) , C[]D 

which is exactly induced by the bicomodule structure of caDDc  of. (3). The 

R-injectivity of D can be lifted to the C-injectivity because C is R-coseparable 

cf. (2.6). It is obvious that Dc is cofaithfuh | 

Let C / R  be a cocommutative coalgebra coextension. An R-coalgebra A is 

said to be split by C if there is a cofaithfully injective C-comodule N such that  

A n C  -~ ec( N)  as C-coalgebras. 
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PROPOSITION 3.6: Let D be an Azuamaya R-coalgebra which is split by a 

cocommutative coalgebra C. If  C / R  is a coextension (not necessarily Galois) 

such that CR is quasi-finite injective, then there exists an Azumaya R-coalgebra 

T which is equivalent to D and has C as a maximal cocommutative quotient 

coalgebra of T. 

Proof." C splits D ~ because it splits D. Hence there is a cofaithfully injective 

C-comodule P such that  g: CrnD ~ ~- ec(P) ,  where ~ is a coalgebra map. By 

Lemma 3.4, we have a surjective coalgebra map: 

~: en(P) ~, ec(P)  e-l* C[:]D ~ sD1, DOp. 

Let (T, ?]d) be the cocommutator  coalgebra of the map r/. Then the map 

(zldDzj)A: en(P) , TC:]D ~ 

is a coalgebra isomorphism. It  follows from [15, 3.21] that  T is an Azumaya 

R-coalgebra equivalent to D. Let e be the map en(P) ~ C as in Lemma 3.4. 

Note that  e is the composite map 

en(P) ~, ec(P)  L C, 

where c is the canonical map of ec(P)  induced by bicomodule structure of c P c  

cf.(3). Now g is a coalgebra map implies that  C cocommutes with D ~ and 

hence e cocommutes with r/. Thus there is a coalgebra map #: T ~ C such that  

e = #r/d and the following diagram commutes: 

~d 
en(P) . T 

ec(P)  ~ , C 

Let (F, pal) be the cocommutator  coalgebra of coalgebra map #. Since (C, #) 

cocommutes with itself, there is a coalgebra map u: F ~ C such that  # = l ] p  d. 

Observe tha t  it follows from the above diagram that  the composite coalgebra 

map 

eR(F) n~ •d * T  * F  

cocommutes with coalgebra map e: en(P) ---4 C. Since ec(P)  is the cocommu- 

ta tor  of e, there exists a unique (surjective) coalgebra map r ec(P)  , F such 
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that  the following diagram commutes: 

rl d a d 
en(P)  , T , 

~ c ( P )  ~ , c .  

F 

We claim that  r cocommutes with ec (P)  ,~ > C. Indeed, for y E ec (P) ,  y = 7r(x) 

for some element x E en(P) ,  and 

E t(y(1) ) (~ r ~--- E tTr(x(1) ) @ r ) 

= ~td~d(x(2)) 

= | #dl]d(x(1)) 

= @ ( : ) )  | r  

Since e c ( P )  is C-Azumaya, C is the cocenter of ec(P) .  Hence there is a unique 

(surjective) coalgebra map r C > F such that the following diagram com- 

mutes: 
ec (P)  ~ , C 

F 

It follows from the universal property of the cocenter C that ur  = 1. Thus r is 

injective, and hence an isomorphism. I 

Recall from [15] that  a coalgebra automorphism f of a coalgebra D is said to 

be inner if the transposed algebra automorphism f* of D* is inner, that  is, there 

is a unit p C D* such that  

E p ( d ( 1 ) ) d ( 2 ) p - l ( d ( 3 ) ) ,  Vd e D. f (d )  

An R-comodule N is i nve r t ib l e  if there exists an R-comodule M such that  

N O n M  ~_ R. Since R is cocommutative, any invertible comodule over R is 

isomorphic to R cf. [15, Cor. 3.23]. 

PROPOSITION 3.7: Let C / R  be a kG-Galois coextension. I f  D is an Azumaya 

R-coalgebra and C is a maximal cocommutative quotient coalgebra of  D that 

splits D, then each a C G can be extended to an inner automorphism of  D. 
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Proo~ Considering D as a C-comodule in the usual way, we have a natural 

(COD - C)-bicomodule structure on D cf. (10). There is however another bi- 

comodule structure on D. In order to distinguish between the two we write D 

instead of D whenever we refer to the second (COD - C)-bicomodule structure 

given by: 

~l(_d) ---- ~((y(d(2))[~d(1))  (~ d(2 ) and xr(d)  = ~ d ( 1  ) Q o(d(2;), 

where we write 2(2) for the images of the elements d(:) in C since C is a quotient 

of D (we will use this symbol later). By Lemma 3.5, the induced coalgebra map 

j: ec (D)  ---~ COD is an isomorphism, and D as a C-comodule is cofaithfully 

injective. Now take C' = C as coalgebras and let a: C ) C' be a coalgebra 

isomorphism. Via base change, D may be viewed as an (ec ( D ) -  C')-bicomodule. 

So there is a unique eoalgebra map a':  ec, (D) ~ ec(D)  such that  the comodule 

structure of ec(n)D comes from ec,(D)D. It is clear that a '  is an isomorphism 

which has inverse a - l ' .  Now it is straightforward to check that  the following 

diagram commutes: 
ec(D)  J , C[]D 

ol 1 
j' 

ec ,(D) ~ C'DD, 

where j / i s  the coalgebra map induced by the bicomodule structure of C, oDDc,.  

By Lemma 3.5, j is an isomorphism, and hence f is an isomorphism. Moreover, 

by a base change argument, D is a cofaithfully injective C-comodule. Thus, 

DOG-- and D [ ] c -  are two equivalence functors from the category CM to the 

category C~ So there are two C-comodules M, N such that  

D ~ D D c M  and D ~- D[:]cN. 

This implies that M O c N  "~ C, that is, M, N are invertible C-comodules. It 

follows from [15, 3.23] we have M -~ C, and D - D as left COD-comodules. Let 

r be the isomorphism from D to D. r is, in particular, a left D-comodule isomor- 

phism of D because D_ = D as left D-comodules. Moreover, COmb_ (D, D) _~ D* 

and AutD_(D) ~- U(D*), the unit group of the convolution algebra D*. There 

is an invertible element p E D* such that 

r ---- ~-~ X(1)p(x(2)) and 0-1(x)  -- ~-~ x(1)p-l(x(2)), x E D. 
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On the other hand, r is a C-colinear map. This yields that for any x E D we 

have 

E O'(X~) ~ r : E r  Q (~(X)(0) 

= Z~(2) ~ X(1)P(Z(3))" 

This gives rise to the formula: 

= 

Now for x E D, we have 

= 

-= Ep-I(x(1))~(2)p(x(3)),  

that is, a is a D-inner isomorphism of C. Therefore a can be extended to an 

inner automorphism of D. | 

Now we are able to show the main result: 

THEOREM 3.8: Let G be a tinite group, R a cocommutative coalgebra. I f  C is 

cocommutative and a right kG-module coalgebra such that C /R  is a kG-Galois 

coextension, then H2(C, kG* ) ~ Br( C / R). 

Proos The map ~P: H2(C, kG *) , Br(C/R) is defined by 62(a) = V ( a , C , G ) .  

This is well-defined since V(a,  C, G) is split by C cf.(9). Suppose that V(a,  C, G) 

= 1 in Br(R). Then there is a cofaithfully injective R-comodule such that as R- 

coalgebras 

 R(P) c, c). 

Via the above isomorphism, P becomes a quasi-finitely injective cogenerator V- 

comodule. Since V as C-comodule is cofaithfully injective (free C-comodule) it 

follows that P is a cofaithfully injective C-comodule. Let c denote the composite 

coalgebra map 

en(P) , V(ol, C, G) 1~.~ C. 

Then the eocommutator coalgebra of e is ec(P) by Lemma 3.4. However, C 

is a maximal cocommutative quotienf coalgebra of V, and hence is a maximal 

cocommutative quotient coalgebra of en(P). This implies that  ec(P) ~ C. It 

follows that  P as C-comodule is invertible. Thus P _ C by [15, 3.23], and 
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eR(P) ~ eR(C) -~ V(1, C, G) by Lemma 2.1. It follows from [4, 6] that  a is 

cohomologous to 1 and we have proved that �9 is injective. 

To show that  q) is surjective, (by Prop. 3.6) we may choose each representing 

element D in Br(C/R) to be a split Azumaya coalgebra with C being a maximal 

cocommutative quotient coalgebra of D. For each a E G, there exists a unit 

uo E U ( D*) such that  

a(d) = ~-~(ua, d(1))d--~(u~ 1, d(3)), Vd C C = D. 

As in the classical algebra case, ~ E Z2(G, C*) defined by -~(a, T) = U a U r U a .  r-1 is a 

normalized 2-cocycle. Let a E Z2(C, kG*) correspond to ~ in Lemma 3.1. Then 

we have a crossed coproduct V(a, C, G). Define a map r as follows: 

D --* kG*, (r  = (d, uo}. 

r induces a map 

�9 : D , V(a, C, G), d ~-* ~ d(1) )% ~b(d(2)), 

which satisfies the commutative diagram: 

D q' , V  

C 

where p is the projection. We verify that �9 is indeed a coalgebra map. To show 

A(~(d)) = ~ ~(d(1)) @ ~(d(2)), Vd E D, 

it is sufficient to check that both sides of the above equation have the same action 

on kG | kG defined by 

[(c ~ p) | (c' ~ p')](~ | ~-) = c(;, ~> | c'<p', T> c c | c .  

This works because C | kG* ~_ Hom(kG, C). Now for a, r E G, d C D, we have 



602 F. VAN OYSTAEYEN AND Y. H. ZHANG Isr. J. Math. 

equalities: 

A(t~(d) )(a @ 7-) 

=[(d0) ~ d(2)(-gal(d(3))~b(d(4))(1)) @ (d(2)(o) >4 a2(d(3))r @ T) 

= ~ d(x)(d(2)(-1), 0) (a l  (d(3)), 0")(r 0") @ d(2)(o)(a2(d(3)) , 7") 

= d(1) | d(:/(o I | ), o) 

= ~ d(1) @ d(2) ~ a<d(3), ~(a  @ r))(d(4), u~,,) 

= E d(1) | d(2) -1 a(d(3), uou~-ua~. )(d(4), uo~} 

= ~ do) @ d(2) ~ a(d(3), uo)(d(4), u~-) 

= Z d(1) | d(3)(d(2), u,,} (d(4), uo-~ } (d(5), u,,)(d(6), u~-) 

= ~ ~(d(i))(0") | tI/(d(2))('r); 

is surjective because ~(D)  = VDR t for some subcoalgebra R I of R and q is 

an R-coalgebra map which forces R = e(D) = eq(D) = e(VOR') = R'. Since 

~7(a, C, G) is an Azumaya R-coalgebra, we have a coalgebra isomorphism: 

(qC:]~d)A: D , V[:3Zv(D), 

and Z = Zv(D)  is an Azumaya R-coalgebra by [15, 3.21]. Since (Z ,~  d) co- 

commutes with (V, ~), it cocommutes with (C,p) by the foregoing commutative 

diagram. But (C,p) = (ZD(C),p d) by our choice. There exists a unique (sur- 

jective) coalgebra map ~/: C ~ Z which completes the following commutative 

diagram: 

D ~ , V  

Z ,  ~ C. 

We obtain a surjective coalgebra map v = 7(1 | r V ~ Z. This coalgebra 

map cocommutes with the identity map lv .  Indeed, since ~ is surjective, each 
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element 6 of V may be written as an image 9 (d) for some d C D. 

= E IX/(d(1)) Q ~I/d(d(2)) 

= E (~(2) GD//(5(1)). 

Note that  v is surjective. It follows that Z is a cocommutative coalgebra, and 

the cocenter of Z is itself. On the other hand, Z is an Azumaya R-coalgebra. So 

the cocenter is R. Therefore, Z = R, and 9 is an isomorphism. | 

COROLLARY 3.9: Let C/ R be a kG-Galois coextension. Then the transpose map 

[D] ~ [D*] defines an isomorphism from Br(C/R) to Sr(C*/R*). 

Proof: Follows from Lemma 3.1, Theorem 3.8, and the classical crossed product 

theorem for the Galois extension C*/R*. | 

Now we are able to show that  the Brauer group of an irreducible coreflexive 

coalgebra R is the union of the relative Brauer groups. Precisely, any Azumaya 

R-coalgebra is split by a Galois coextension of R. This gives an affirmative answer 

to the question proposed in [15, p. 568]. Recall that  a coalgebra D is co re f l ex ive  

if C = (C*) ~ where A ~ of an algebra A is defined as the maximal coalgebra in 

A*. 

THEOREM 3.10: Let R be an irreducible coreflexive cocommutative coalgebra. 

Then Br(R) = Br(R*). 

Proof: We know that the transpose map in Cor.3.9 gives a monomorphism from 

Br(R) to Br(R*) cf. [15, 4.12]. As shown in [15, 4.13] R* is a completely local 

algebra. It is well-known that the Brauer group of a completely local ring (or 

algebra) is equal to the Brauer group of the residual field and hence is equal to the 

union of the relative Brauer groups. Let Br(R*) = U Br(A/R*), where A runs 

over all the Galois extensions of R*. If we can show that any Galois extension 

A of R* is a dual of some coalgebra C which is a Galois coextension of R, then 

applying Corollary 3.9 we obtain that Br(R*) is full of Br(R*). 

Let A/R* be a Galois extension with respect to a finite group GA. Let w be 

the maximal ideal of the local algebra R* such that  R*/w = k. Since A/R* is 
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a finite Galois extension and R is local, A is a finitely generated free R-module. 

This yields that A / w A  ~- k | A is a finite dimensional extension of k. In fact, 

A - A / w A  is a Galois extension of k with respect to the same group GA, where 

G acts on A via the acting of G on A, that is, g(a | u) = g(a) | u, g E G, 

a E A, u C k. The proof of this fact is easy. For instance, the canonical Galois 

isomorphism: 

A @ A ~ A @ kG*A, "a | -b ~ ~ -5b(o) @ b(t) 

(here A is a right kG~-comodule algebra) may be obtained in the following way: 

A |  ~ (k@R* A)@(k|  A ~- k| (A@R*A) ~- k| (A| = A@kG*A. 

_ _  - - $  

Since A is finite dimensional, we may consider its dual coalgebra A , denoted by 

D. It is obvious that  D is a kGA-Galois coextension of k. It follows from (7) that 

R | D is a kG* A (or k(1 x G~))-Galois coextension of R. Now let C be R | D. 

We have that  

C* ( R | 1 7 4  * R* A ) " A ,  = = |  |  = 

where the first isomorphism holds because D is finite dimensional. Thus we 

proved that the coalgebra C is the desired coalgebra, and the proof is done. 
| 

COROLLARY 3.11: Let R be an irreducible coreflexive cocommutative coalgebra. 

Then every Azumaya R-coalgebra is split by a Galois coextension of R, and 

the Brauer group Br(R) may be interpreted as the union of the second Galois 

cohomology groups. 

Proof: Follows from Th. 3.8, Cor. 3.9 and Th. 3.10. I I  

Note that  in general the transpose map (*) in Cot. 3.9 does not induce an 

isomorphism from Br(R) to Br(R*), and the classical splitting theorem for the 

Brauer group of a field fails in general. 

Example 3.12: Let R be a group-like coalgebra QS, where Q is the rational 

field and S is an infinite set. We know that Br(R) = 1-is Br(Q) el. [15]. Let 

K be a (usual) Galois extension of Q with Galois group G -- Gal(K/Q).  Then 

K is finte dimensional over Q. It follows that K*/Q is a G-Galois coextension, 
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and e , e s  K*/Qs, K* = K*, is a G-Galois coextension (see the proof of Prop. 

2.5). Moreover, all the Galois coextensions of QS arise in this way. It is well- 

known that  Br(Q) = UK Br(K/Q), K runs over the Galois extensions of Q. 

Thus Br(R) = l-/s Br(Q) = rIs(UK Br(K/Q)), which is not a torsion group. On 

the other hand, the union of the relative Brauer groups Br(C/R), C/R a Galois 

coextension, is torsion by Theorem 3.8. So Br(QS) cannot be the union of the 

relative Brauer groups. 

To complete this paper let us give an example of the crossed coproducts as 

Azumaya coalgebras. 

Example 3.13: Let R be the field of real numbers. Let C be a coalgebra over R 

generated by two elements i, j as follows: 

e(i) = 1,. e(j) = 0, 

A(i) = i |  j @j, and 

A(j)  = i |  j + j | 

Let G = {1, e} be the cyclic group of order 2. Define a G-action on C given by 

i ~ e = i ,  j ' - - e = - j .  

Then C is a right RG-module coalgebra, equivalently a left RG*-comodule 

coalgebra. Let Pl,p~ be the orthogonal basis of RG*. Then the left comodule 

structure of C is given by 

p( i )=(p ,+p~) |  l |  p ( j ) = ( p l - p ~ ) |  

It is straightforward to check that C/R is an RG-Galois coextension. Now we 

construct a nontrivial 2-cocycle a of Z2(C, RG*) as follows: 

o ' ( i ) = p l | 1 7 4  a( j )  = 0. 

It is routine verification that cr satisfies the cocyle conditions: 

(1) [(1 | a)p] * [(1 @ A)a] = [(A | 1)or], [f3~], where f3(x | y) = x @ y @ 1, 

x, y E RG*, 

( 2 )  =  c(c)lRG. = for  a l l  c �9 C .  

Thus the crossed coproduct D = C ~,  RG* is an R-coalgebra split by C cf. 

(9). We show that  D is not an elementary Azumaya R-coalgebra. Let Qa be an 
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R-coalgebra generated by four elements a, b, c and d as follows: 

A(a) = a | 1 7 4 1 7 4 1 7 4  

A(b) = a Q b + b Q a + c Q d - d Q c ~  

A(c) = a | 1 7 4  

A(d) = a |  and 

e(a) = 1, e(b) = e(c) -- c(d) = 0. 

Define a map 0 from D = V(a, C, G) to Q4 given by 

O(i>4pl)=a, O(i>4p~)=b, O(j>4pl)=C, and O ( j ~ p e ) = d .  

Now a straightforward computation shows that  0 is an R-coalgebra isomorphism. 

However, Q~ is the quaternion algebra R ( - 1 , - 1 }  which is a nontrivial Azumaya 

R-algebra. It follows that D is nontrivial. It is well-known that  Br(C*/R) = Z2 

with the nontrivial element [R(-1 ,  -1}], where C* is the complex field. It follows 

from Cor. 3.9 that  Br(C/R) ~- H2(C, RG*) = Z2. 
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